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Abstract

A framework for studying asymptotic orders of reachability i{n perturbed
linear, time-invariant systems {s developed. The systems of interest are
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I. INTRODUCTION

I.1 MOTIVATION

In this paper. we develop and apply a theory of asymptotic orders of
reachability in linear time-invariant systems parametrized by some small :
variable, e. The approach draws in part on the algebraic formulation of [1,2].
To provide a motivation for the key issues in our approach, consider the

following discrete time system as an example:

M S AT

Example 1.1
xper] = [ 3y 3lx0a + [ Jot
This system is reachable but the reachability matrix
(blAb] = [.él e
is not very far from a singular matrix, in that its condition number is

Fanl® -yl ]

approximately 104. This leads to numerical difficulties in determining .

reachability. as shown in [3]. Also, consider the minimum energy control
y problem for this system. The minimum energy control to reach x[2] = [1 0]°
(where ' denotes the transpose) from x[0] = O is “l[l] = -.5 and u1[2] = 1.5,
while the minimum energy control for x[25| =117 1is u.2[1] = 49.7 and u2[2] =
-49., This order of magnitude difference between uy and u, {s another indication
of near unreachability. Still further indications msy be obtained. for example
by considering how small a perturbation of the system matrices suffices to q
destroy reachability (in this case, of the order of 0.01), or by examining the
magnitude of feedback gain required to shift poles by various amounts (in this

case, to move the eigenvalues by 2, feedback gains of magnitude approximately

102'aro required, as {llustrated in Example 3.1). oo
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Our treatment of problems of this type is qualitative rather than numerical
in nature: we assume that small values in the system are modeled by functions of o

a smal]l parameter ¢, which implicitly indicates the presence of different orders

-

g oA

of coupling among state variables and inputs. The formulation that we use

permits the state space to be decomposed according to the "asymptotic orders of

- .
Fadr ¥-ur b

reachability” of different target states. Specifically, we consider continuous

&

time and discrete time systems of the form

2 X

x(t) = A(e)x(t) + B(e)u(t) (1.1)
x[k+1] = A(e)x[k] + B(e)u[k] (1.2)

e g

-
-

Here A(e) and B(e) in general have entries from the field L(e) of functions &(e)

2

that have asymptotic expansions (see [4]) of the form: '

- 3

e(e) = 2 eia (e-0) (1.3) 3

21

-k :

for some finite k. so, <

Al

A(e) @ L7(e) = LM(e). B(e) : L"(e) = L"(e) (1.4) v

(Strictly speaking. we should write = instead of = in (1.3) to emphasize that ‘-

the series on the right is asymptotic and not necessarily convergent [4]. but .f

\.

this abuse of notation is common.) : ~

Defining these systems over L(e) permits us to examine the effect or

necessity of high gain feedback. However, many of our results will involve ;

matrices over the ring T(e) of functions t(e) that have asymptotic expansions of t

the form: ¢

[ J 1 -~

t(e) =2 te’  (e0) (1.5) b

0 .

For verification that T(e) is a ring, see [4, p. 15]. The ring T(e) is easily ;‘
shown to be a principal ideal domain and L(e) is its field of fractions. This

LY

allows us to use various results on matrix canonical forms such as the Smith D

)
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Form (5. App. B.2] in our development. (The symbols L(¢) and T(e) have been
chosen to serve as mnemonics for "Laurent-series like” and "Taylor-series
like".)

The above formulation strongly suggests connections with work on
parametrized linear systems [6.7], and more generally with studies of systems
over rings [8.9]. The approach in this paper owes something to our earlier work
[1.2] on an algebraic framework for multiple time scale decomposition in
singularly perturbed systems, and therefore takes a relatively independent tack.
The important task of making and exploiting explicit connections with the
literature on systems over rings is left to future work. (Sontag [10] has shown

us that explicit connections are not only possible but may be quite fruitful.)

This work was particularly motivated by the numerical problems encountered
in various pole placement methods and in evaluating system reachability. Pole
placement and related numerical issues are addressed using various approaches in
the current literature [11-14]. In multi-input systems, unlike single-input
systems, the feedback matrix that produces a given set of poles is not unique,
and the additional degrees of freedom may be used to attain other control

objectives (see [14]). One may, for example, attempt to minimize the maximum

feedback gain; [12] addresses this problem via numerical examples involving

balancing [15] the A and B matrices and redistribution of the feedback task
among the inputs. These examples contain some intuitive ideas, but have not led
to systematic procedures that work well for well-defined and substantial
classes of systems. One of our objectives here is to suggest an analytical

approach to understanding and structuring feedback gains for pole placement.

Another area of numerical work involves criteria to measure

controllability. Boley and Lu [16]) use the "distance to the nearest
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uncontrollable system™ as a criterion. They define this by the minimum norm
perturbation that would make a system uncontrollable. They also relate this
concept to state feedback by measuring the amount that the eigenvalues move due
to state feedback of bounded magnitude. Connections may also be made to the
literature on balanced realizations, [15]. where the singular values of the

controllability Grammian are used to indicate nearness to uncontrollability.

The issue of controllability in perturbed systems of the form (1.1) has
been examined by Chow [17]. He defines a system to be strongly controllable if
the system is controllable at ¢ = 0. Otherwise, he calls it weakly controllable
and concludes that pole placement of such systems will require controls with
large gains. Chow looks at systems with two time scales (slow and fast), and he
proves that a necessary and sufficient condition for such a singularly perturbed

system to be strongly controllable is the controllability of its slow and fast

subsystems.

Our analysis goes further than Chow's in that we examine the relative
orders of reachability of different parts of the state space. As already
mentioned, the methods we use have some similarity to those used by Lou et al.
(1.2]., who relate the multiple time scal; structure of the system (1.1) to the
invariant factors of A(e). wvhen this matrix has entries from the ring of
functions analytic at ¢ = O. The results {n [1,2] actually hold for A(e)
defined over the considerably more general ring T(e) used in this paper, though
this fact was not recognized there. The Smith decomposition of A(e) plays a key
role in the analysis of [1.2]. while the Smith decomposition of the reachability

matrix is central to the development in this paper. While the primary focus of

the work in [1.2] is on time scale structure, some attention is paid there to

control. In particular, [1] gives results on the use of feedback in (1.1) to
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change the time scale structure of the system. The work in [18] may be seen as
a continuation of the work in [1.2] in that it analyzes the effect of control

and feedback on the system of (1.1). This paper is based on the work in [18].

1.2 OUTLINE

Throughout the paper, Qk(e) will denote the k-step reachability matrix:

€ (e) = [Ble) | A(e)B(e) | ... A" (e)B(e)] (1.6)
vhere A(e), B(e) are as in (1.1)-(1.5). We shall simply write €(e) for ‘Cn(e).
and call this the reachability matrix. Ve also assume throughout that

(A(e).B(e)) 1is reachable for all ¢ € (0,a), aeR’, or equivalently €(e) is full
row rank for all ¢ € (0.,a), aer’.

In Section II, we develop a theory of orders of reachability. We start
with discrete time systems and illustrate that the orders of reachability can be
recovered from the Smith decomposition of the reachability matrix. We define a
standard form which displays these orders explicitly. Also, we show that
equivalent results hold for continuous time systems. In Section III, this
theory is extended to pole placement by full state feedback for systems with
entries over T(e). We also provide a co;lputationally and numerically reasonable
algorithm for pole placement. Section IV develops connections with Willems'
work on "almost invariance” [19,20]. We show how to find an input that steers
the trajectories of a system arbitrarily close to an almost (A.B)-invariant
subspace and show that the subspace that a sequence of (A.B)-controllability
subspaces converges to is almost (A,B)-invariant. In Section V, we summarize

our results and suggest problems for further research.
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II. ORDERS OF REACHABILITY

II1.1 eJ-REAGIBILITY FOR DISCRETE TIME SYSTEMS

We start by developing our theory of asymptotic orders of reachability for
systems of the form (1.2) in an analogous way to existing linear control theory.
In order to provide a motivation for our approach, let us start with the

following counterpart of Example 1.1:

Example 2.1:

x[k+1] = [:_ ;]xck] . [:]u[k]
so

e(e) = [1 l+e
This system is reachable for all ¢ € (0.2). The minimum energy control sequence
needed to go from the origin to x1[2] = [1 0] is ul[l] = ~-1/(2-¢) and u1[2] =
3/(2-¢)., which are 0(1), [4]. The minimum energy control sequence for x2[2] =

(1 1] is u2[1] = (~e+1)/e(2~¢) and u2[2] = (2e-1)/e(2-¢), which are O(1/e). -

This characterization of target states by the order of control sufficient

to reach them is now generalized as follows for the discrete time system (1.2):

Definition 2.2: x(e) € 'l'n(e) is g’-rgchable 1f there exists an O(l/e") input
sequence ¥(e) ® [u'[n~-1] <+ u'f0]]’ such that x(e) is reached from zero in n

steps using ¥Y(e) ({.e. x(e) = €(e)¥%(e)).

Let 1" be the set of all eJ-rmhable states, then !o Cc 11 c é C... and 1‘1 is
a T(e)-submodule of Tn(e). Ve term 1‘1 the g_J-reache submodule. .o
6
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Note that if x(e) is ej-reachable. then (1/e¢)x(e) is not necessarily

eJ-reachable. Thus if we had considered target states in Ln(e) in Definition

2.2, then the set of el-reachable states would not be L(e)-subspaces.
In Example 2.1, 10 = Im[1 0] + eTz(e). 11 = 12 = ... = T2(e).

An interesting property of the set of eJ-reachable submodules {s that all

the structure is embedded in the eo-reachable submodule. First of all, note

that 10 is the restriction to Tn(e) of the image of the reachability matrix

under the set of all control sequence vectors ¥(e) in T"n(e). Also, the
eJ-reachahle submodule is simply obtained by scaling the ej-l-reachable

submodule by 1/e. To state this formally:

Proposition 2.3: 40 = {¥(e)T™(e)}M(e) and 2! = L{ad™! n e1™(e)) -

l;(lj-i N e11™(e)). for nonnegative integers 1. § and J21.
e

Proof: By Definition 2.2, !o = (Q(e)T’n(e))rﬂn(e). or in general
ol = (¢(e)17637 ()} (). Then.

Ll e 1)) = L(Sp0(e) ™ (e))ne 1(e))

€ & [

= (—34()T™(e) )T (e) = o .
&

The structure of the eJ-reachable submodules {s not always as easily
obtained by inspection of the pair (A(e).B(e)) as it was in Example 2.1. To
illustrate this, consider an e perturbation of Example 2.1:

Example 2.4:

x[k+1] = [_: HEOE [l]u[k]
for which
%(e) = [1 l+e]

¢ &

nyw
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+ This systéu is reachable for all ¢ € (0.®). In this case, we find that x1(2] =

=

- ow e

(1 0]* is e-reachable, and x2[2] =[11] is e2-reachable. Therefore, even an e

-
PR

perturbation may cause drastic changes in our submodules. oo

I1.2 SMITH DECOMPOSITION OF €(e)

e

5 The key element in our results is the Smith decomposition of €(e). since in .
} effect this tells us how €(e) becomes singular as el0. The nxmn matrix €(e). i
K which has been assumed to have full row rank for €¢€(0,a), has a Smith ,
: decomposition [1, 2, 5., 21, 22] ;
p (e) = P(e)D(e)Q(e) (2.1) ,
f where P(e), nxn., is unimodular (detP(0)#0). Q(e). nxmn, i{s full row rank at =0, f
\ hence, right-invertible over T(e): and }
D(e) = diag{e™P1_ . P 1. ... &) (2.2) 2
: P_h P_he+1 Po Py ,
. is nxn where Ip1 denotes a 1 identity matrix with p1=0 corresponding to :
é absence of the i-th block, and with p, #0. Ve shall term k the order of t
R reachablity of the system, for reasons that will become clear. The indices P, ]
. and hence D(e). are unique, though P(e) and Q(e) are not.

é For the remainder of this section, we will assume, without loss of

:- generality. that h=0 as this can simply be achieved by scaling the input by eh.

) Now, from Proposition 2.3 and Equation (2.1), o - P(e)ﬂJ where

B ¢=‘J’e‘j*1*°” 1

. and & = Im{I_ O]'. n, mp.+ ... +p,. In fact o is Just the ed-reachable
93 ll1 i (o] i

+ K0 (2.3)

P S P )

+ ek-l-Jlk_

Y submodule of the new description obtained through similarity transformation by

P(e), and {ts structure immediately follows from the fact that the reachability

o

: matrix of the transformed system is D(e)Q(e) with Q(¢) right invertible over

ﬁ T(e). This transformed system is examined further in the next subsection. '
) L%
J :
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Consider a pair (A(e).B(e)) with a Smith decomposition of {ts reachability

matrix defined as above. We will term such a system an ek-reachable system with

(reachability order) indices n,.

P"l(¢)B(e). The patr (A(e).B(e)) will be called a standard form for
(A(e).B(e)).

m . Let A(e) = P l(e)A(e)P(e) and B(e) =

The system in Example 2.1 is already in standard form, because it has a
Smith decomposition ;1th P(e)=I. For the system in Example 2.4, a Smith
decomposition of the reachability matrix is:

eu)aﬁ?” H‘“ﬂgrumumu)

The structure of D(e) uncovers the previously hidden e¢“ structure. To see this

more explicitly, transform the system by P(e):

yoe1] = 28 1 o« [3)ena

A standard form for a system is termed a proper standard form if A(e) has

the following structure:

Ao.ole) 1/eAy ((e) - . . 17654, () ]}p,

k- l
€A A RSV, (e)
Koy = | 100 Al e Ry (2.4)

kak.o(e) ek-lAk.l(e) o 1 Ak:k(e)‘)ﬁk

where the Ai J(e) are over T(e), and n, = 2 pJ. Note that in this case, due

.

to the structure of K(e) and 7(&). satisfying our assumption that h=0 in (2.2)

only requires scaling B(e) or equivalently B(e) such that its leading order term

0

is ¢ . Then, B(e) has the structure:

PO L CRLI AT GOSAT LA g S AR s 1o, 1 0T
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:: Bo(e) )Po

3 _ eB, (¢) [}p,

b B(e) = (2.4b)

) .

Ry ékBk(E)J )pk

Y ;

l:‘ ;

:f Example 2.1 and the transformed version of Example 2.4 are both in proper '
standard form. In fact, the next result shows that finding one proper standard f

o

% form is enough to conclude that all standard forms of a pair are proper: !

i Proposition 2.5: If a pair (A(e).B(e)) has a proper standard form. then all ]

standard forms of (A(e).B(e)) are proper.
> Proof: Let €(e) = Pl(e)D(e)Ql(e) = Pz(e)D(e)Qz(e). then Zi(e) = PIl(e)A(e)Pi(e).

s, ﬁi(e) = P;l(e)B(e) for i=1,2 are two standard forms. Suppose that the pair

;; (Kl(e).ﬁl(e)) is a proper standard form. Let Ai(e) = D-l(e)xi(e)D(e).
' B,(¢) = D '(e)B,(e) for i=1,2. Note A, (¢) and B,(e) are both over T(e). Ve ‘
‘: wish to show that the same is true for x2(e) and §2(e). Let
. \
N, R(e) = D"(e)P; ()P, (¢)D(e). then R(e) is invertible over L(e). and :
- -1 3
& Qy(e) = R(e)Q (e). But then R(e) = Qz(e)QI(e) and R™'(e) = Ql(e)Q;(e). where L
N Q;(e) denotes the right inverse of Qi(e). which exists over T(e). Thus, R(e) is ’
s unimodular. Since (A (e).B,(e)) is over T(e) and Aj(e) = R(e)A, ()R 71 (e). :
~ ~ ~ ~ ~ A
N B,(e) = R(e)B,(e). the pair (A2(e).32(e)) is also over T(e). Therefore, 1
- = 1

N (Az(e).Bz(e)) is a proper standard form. ..
' A

) ]
AN L
:: A pair (A(e).B(e)) is termed proper if it has a proper standard form. !
N Thus, the systems in both Examples 2.1 and 2.4 are proper. It turns out that

- the condition that the coefficients of the characteristic polynomial of A(e) are '
'S over T(e) is necessary and sufficient for a system to be proper. In general, w l
< have the following:

(4
| o

Cd
(7

. ‘
N
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Proposition 2.6: The following statements are equivalent: .
1. (A(e).B(e)) is proper. E‘
- )
2. ?1(e)=[8(e)| .. A 1(e)B(e)] for all positive integers i is over T(e). To ™
say this more simply, € (e) is over T(e). }f
3. The coefficients of the characteristic polynomial. o(A(e)). of A(e) are over ;.

T(e).

o

Proof (1-2) Follows from the definition of a proper form and the structure in

(2.4).

L
.
] 2

(2-3) It is not hard to show, using Theorem 1.15 of [8], that T(e) is completelv

h
»
0

~

integrally closed. Since € _(¢) is over T(e). the map (Ai-l(e)B(e)}:=1 is over

T(e). Finally, by invoking Theorem 4.17 of [8]. we achieve the desired result.

An alternative proof mey be obtained by working with the Jordan form of A(e).

and using results in [23].

(3+1) Let A(e) = D (e)A(e)D(e). B(e) = D™ (e)B(e). Since € (e)=Q(e) is over

T{e). E(e) is also over T(e). Since the coefficients of a(:(e)) are over T(e).

it follows from the Cayley-Hamilton theorem that €_(e) is over T(e). In

P A A AR S A AR e

particular, ;(e)zn(e) is over T(e) and since Q(e) is right invertible over T(e).

cd

A(e) is over T(e). Therefore, (A(e). B(e)) is a proper standard form. -

As an immediate consequence of Statement 2 of Proposition 2.6 we have the

M P YRS

following important property of proper systems:
Corollary 2.7: Given a proper pair (A(e).B(e)). x € ad §ff x is reachable with

O(I/eJ) control in p steps. for all p2n. °e

.« ay - "_'"“':‘,('s(,

For proper systems, therefore, it suffices to work with the Smith structure of

€ (e) = €(e).

WA

Let us also supplement Proposition 2.6 with the following:

Corollary 2.8: zu(e) 1s over T(e) {ff ;n+1(e) is over T(e).

11
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Proof: (=) Since §n+l(e) = [E(e) | Z(e);n(e)]. and ;n(e) is right invertible
over T(e), :(e) are E(e) are over T(e). Thus, zg(e) is over T(e).

(«) Trivial. o

The standard form will prove to be very useful to us, especially for
finding feedback to place eigenvalues (Section III). In the Appendix we develop
an algorithm to get to a standard form without first constructing the
reachability matrix and then explicitly determining its Smith decomposition in
order to obtain the transformation matrix P(e). The algorithm works directly on
the pair (A(e).B(e)). and is a natural extension of the recommended procedure

[3] for testing reachability of a constant pair (A,B).

II.4 CONTINUOUS TIME

A natural counterpart to Definition 2.2 for continuous time is as follows:

Definition 2.9: x € T*(e) is eJ-reachable if 3 T€R" and u(t) € 1/e3T™(e)

Y t€[0,7] such that x(r) = x, with x(0) = O.
J ] 0 1 5:2 3
Let X° be the set of all e”~reachable states, then 4" C ¥ C C ... and X’ is

an T(e)-submodule of Tn(e). We term 9 the e-reachable submodule. --

These submodules have properties analogous to those of discrete time as the

following proposition and corollary show (the proofs are given in detail in
[18]):

Proposition 2.10: Given a continuous time system descibed by the pair
n

(A(e).B(e)). then %0=CA(e) |8 T (e) where Ae) |8 >= A'7!(e)8,_ and 8_ 1s the
1

image of B(e) over T(e). .
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Corollary 2.11: ¥ = P(e)D(e)T"(e) where €(e) = P(e)D(e)Q(e) is a Smith

decomposition for the reachability matrix. ..

Using the iterative relation 1J+1=é(ljﬂeTn(e)). (Proposition 2.3), we can
recover all the other reachability submodules from the Smith decomposition of
the reachability matrix and Corollary 2.11. Therefore. all our results for

discrete time also hold for continuous time.

One important difference exists, however. By an e-dependent change of time
scale in continuous time, we can satisfy Statement 3 of Proposition 2.6, so
there is no loss of generality in assuming that a continuous time system (1.1)

is proper. In discerete time, by contrast, an assumption that (1.2) is proper

is restrictive.
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III. SHIFTING EIGENVALUES BY O(1) USING FULL STATE FEEDBACK

In this section, we restrict our attention to reachable systems over T(e).
These systems are proper and all eigenvalues of A(e) are continuous at e¢=0. We
address the problem of arbitrarily shifting the limiting values of these
eigenvalues as e~0, using full state feedback. In other words, we wish to find

F(e) over L(e) such that AF(e) = A(e)+B(e)F(e) has the desired eigenvalues as
e=0.

Example 3.1: The eigenvalues of A(e) in Example 2.1 are at A =1+0(e) and
A3=2+0(e). A state feedback of [2 4] shifts these eigenvalues to 3+O(e¢) and
2+0(e). It is not hard to see that there is no O(1) state feedback that can
arbitrarily place A\, as ¢<0. However, a state feedback gain of [S5 -1/e] shifts
the eigenvalues to 3+O(e) and 4+0(e). Here both eigenvalues are moved as e-0,

but an O(1/e) feedback gain has to be used. Note that the closed loop system

6 1-1/6]. B(e) = [:]

Ap(e) = [Ge 1

is not over T(e) but it is e-reachable with the same indices, no=1 and n1=1. as

the original system, and is in proper standard form. ..

We shall now show that., for systems over T(e), the order of feedback gain

necessary and sufficient to place the limiting values of all eigenvalues as ¢

is directly given by the order of reachability of the system. Let us start by "f.:-
looking at eo-reac}mble systems. In all that follows, A denotes a 5
self-conjugate set of n eigenvalues, A(A) denotes the spectrum of A, and Z .';:
denotes the set of all integers. Define E'.-'

a-= t:éxzm {r] YA, TF(e) = 0(17e"). s.t. A(A(e)+B(e)F(e))|e=o=A) (3.1) ?:

LA |

&

Hence a is the smallest order of feedback gain that will produce arbitrary

e L AN
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placement of the limiting eigenvalues as ¢-O. b
Lemma 3.2: The pair (A(e).B(e)). over T(e). is eo-reachable 1ff a=0.
\ Proof: (=) If the pair (A(e).B(e)) 1s eo-reachable. then, ’G(e)leso has full row _ ;
R rank. Thus, the pair (A(0).B(0)) is reachable, and VA, F:R" - R" s.t. \
. A(A(e)+B(e)F) |e-0 = A(A(O)+B(O)F) = A. Hence a$O. Now assume a<0. Then, "
lim F(e) = O for those F(e) of O(l/ea) that produce arbitrary placement of the |:',
: ed0 )
. limiting eigenvalues as ¢-0 according to (3.1). But then lim (A(e)+B(e)F(e)) = -
elo :
A(O). so no limiting eigenvalue as ¢=0 is moved, which i{s a contradiction. We ::
X conclude that a=0. \
] o
. («~) Conversely. assume that a=0, then VA, 3F=F(e)|e=0 s.t. A(A(O)+B(0)F)=A.
5
Thus, the pair (A(0).B(0)) is reachable, and f(e)le_o has full row rank, so the 3
. ‘
. pair (A(e).B(e)) is eo-reaclnble. .. o
Proposition 3.3: The pair (A(e).B(e)). over T(e). is ek-reachable {ff a = k. _
~ )
) Proof: (=) If the pair (A(e).B(e)) is ek-reachable. then the pair A(e) = '
D ()P (e)A(e)P(e)D(e). B(e) = D"l (e)P  (e) is eC-reachable and is over T(e) 4
(Proposition 2.6). Thus, by Lemma 3.2. VA, 3 an O(1) F(e) s.t. t
, A(A(e)+B(e)F(e)) |, = A. Let F(e) = F(e)D '(¢)P (e). then F(e) 18 0(1/e¥). :
Since (A‘F‘:(e).g(e)) is proper, the coefficients of a(:‘F"(e)) are over T(e). Thus,
11m A(A(e)+B(e)F(e)) = 1im A(A(e)+B(e)F(e)) (3.2) R
elo elo R
K and ack. To see that the equality must hold. note first that X
k
er.o(e) €Ay 4(e) . .. kka°"‘(eﬂ o
~ A1 o(e) Al 1(e) Y Al k(e) h
Ale) = ' ' ' (3.3) "
X . : Ny
. . . g
Aofe) A qle) o A (e
lumns 5
n- co "
i -1 3
where the A1 J(e) are over T(e). Now, if ack, then the last n-n, columns of N
\ . h
1 w!
: 15
h ™
X
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F(0) = lim F(e)P(e)D(e) = O for those F(e) of 0(1/e%) that produce arbitrary v
€40 y
eigenvalue placement according to (3.1). But then )
lim(A(e)+B(e)F(e)) = [' ° ] (3.4) 3

elo * A x(9) |
where »* denotes some constant entries, and the limiting eigenvalues :
¢

corresponding to Ak k(e) are not moved, which is a contradiction. We conclude 3
that a=k. :
Ly

(<) Clearly, the pair (A(e).B(e)) is eJ-reachable for some §. By the first part y
of this proof. a=j. Hence j=k and the pair is ek-reachable. .- v
iyt

Note that if some pair (A(e).B(e)) over T(e) is eo-reachable then the o
closed loop pair (AF(e).B(e)). where AF(e) = A(e)+B(e)F(e). is eo-reachable for 9

all F(e) of O(1). Thus we have the following result: ?‘
Corollary 3.4: Given a pair (A(e).B(e)) over T(e). the eJ-reachability indices \
Rt

n,. as defined in Section II.3, are invariant under any feedback of the form i
F(e) = F(e)D-l(e)P-l(e) where F(e) is O(1). Also. the closed loop pair is N

o~

proper. . D,
The ej-reachable submodules of the standard form are uniquely determined by ,

the indices, and the eJ-reachable submodules of the original system are uniquely o

determined by the eJ—reachable submodules of the standard form, via P(e). Thus: "

Corollary 3.5: Given a pair (A(e).B(e)) over T(e). the eJ-reachability ]
submodules are invariant under any feedback of the form F(e) = F(e)D-l(e)P-l(e). k

where F(e) 1s O(1). .

&N Y

For the more general class of proper systems over L(e). the orders of

Ty

feedback gains do not necessarily match the orders of reachability. Let us

5 |

Tt ow
.

ol Lt

consider the following example:

2%

4

.
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Example 3.6: The pair

0 0 0 10
A(e) = |0 O l/e]. B(e) = [0 1]
00

0 2¢ O
corresponds to an e-reachable system in proper standard form. Let \
. ]
: £f. £, 0 ‘
b 1 °2 .
, F(e) = .
.f3 f'4 OJ B
. where the fi are all scalar constants, then
g 3 2 -
:. det(kI-AF(e)) = N -(f1+f4)>\ +(f1f4-f2f3-2))\+2f1. Clearly, ftem can be chosen 2

appropriately to match any third degree polynomial with real coefficients.

Therefore all eigenvalues of A(e) can be arbitrarily moved as -0 using only

O(1) feedback gains.

What happens in this example is that an O(l) gain for the

third state component produces an O(1/¢) input for the second component.

Therefore. even with O(1) gains, the input values themselves will be O(1/¢), as

would be expected when producing shifts (n the limiting eigenvalues for this

e-reachable system. ..

¢ The overall effect of O(1) feedback on the eigenvalues. even for systems

RIS N P U

over T(e). is a more subtle issue than the order of feedback necessary to shift

the limiting eigenvalues. Consider the following example:

: Example 3.7: Let . )
‘ 01 1 -
S BTN |
s The reachability order indices are no-l and n1=2. The eigenvalues of A(e) are -
- at +Ve. Feedback of [-1 -1] moves the eigenvalues to -1 and -e¢. Thus, the :j

effect of feedback is larger than O(e). namely O(ve). (It is worth noting that

Y the original system did not have well-behaved time scale structure in the sense

of [1.2]. and that the feedback produces well-behaved time scale structure.) -°

We leave these problems for further research. Section V suggests some

- A - - A-' '-
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potential extensions.

An extension of Algorithm A.3 can be used to compute the feedback matrix
necessary to shift eigenvalues by some desired amount. Application of Algorithm
A.3 produces a pair (Ak(e).Bk(e)). where Ak(e) = S-l(e)A(e)S(e). Bk(e) =
S-l(e)B(e). where (Ak(O).Bk(O)) is reachable and S(e¢) is the product of all the
similarity transformations used to achieve the final pair. From the pair
(Ak(O).Bk(O)). we can compute a feedback matrix F such that the eigenvalues of
AkF(O) = Ak(O) + Bk(O)F are as desired. V¥We have that A(Akr(e))|e=o=A(AkF(O))
and that (A(e).B(e)) is proper. Let F(e) = FS™'(¢) and Ac(e) = A(e) +
B(e)F(e). Since S(e) is invertible for ¢€(0,a) for some a€R, (AF(e).B(e)) is
also proper. Therefore, as in the proof of Proposition 3.3, the eigenvalues of

AF(e) are as desired.

This algorithm was applied {n [18] to a fifth order, weakly reachable
system over R with one input. The system was first parametrized by replacing
certain small entries by (constant multiples of) powers of ¢. The feedback gain
to place the limiting eigenvalues calculated for the parametrized system by the
above approach was evaluated at the specific value of ¢ corresponding to the
original system. This approach produceé far better numerical results than
calculating the feedback directly for the given system. Similar concerns have
been expressed by authors interested in numerical issues of multivariable pole
placement for linear time invariant systems (as explained in Section I.1). Our
approach would attempt to address those issues by scaling the pair (A.B)
appropriately. Unfortunately, (A.B) has to be parametrized by e first if e does

not represent some (small) physical parameter. Further study of this problem is

left for future research. though some heuristic suggestions for parametrizations

are made in Section V.
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IV. ALMOST INVARIANT SUBSPACES N

Y
3

IV.1 (A(e).B(e))-INVARIANCE AND ALMOST (A.B)-INVARIANCE ,|
)
In this section, we use our framework to provide some new insights on the .::':,:
notions of almost (A.B)-invariance and almost (A.B)-controllability, introduced N
I.H h
into the geometric approach to linear systems, [24], by J. C. Willems [19]. e
¢

s

These concepts have applications to disturbance decoupling, robustness., noisy

-

gain stabilization and cheap control.

i)

e
To provide orientation and give the flavor of our approach, we consider the WY
ain
following example: A
.:-f':-.
Example 4.1 Let 33
o
_100 _ Y,
A= 10].3-[0] 3
It is easy to see from the results in [19] that 1a:Im[1 0]' is an almost i
s
(A.B)-invarijant subspace. Consider the L(e)-subspace, 16. generated by [1 €]". ;\"
wo
Since iy
o o] 0 1 1 2
Balk] =[] = Elaer + [ileve. =
N
this subspace is an (A.B)-invariant L(e)-subspace, [24]. As e = O, -::: ,
. ;':\'
7~ Im[1 0] (over R). which is the almost (A.B)-invariant subspace identified :}:\
o
above. So we have found an (A.B)-invariant L(e)-subspace 7. that converges SN

;.

asymptotically to an almost (A.B)-invariant subspace. Using the relation

()
I-\ 8
(-1/¢) = -F(e)[1 e¢]* with F(e) = [1/e 0], 'le is A.I_.(e) invariant, where :':.\
Ax(¢) = A + BF(e) = [‘{‘ g]. 7
]
Furthermore, 7. is a coasting subspace. [19]. {.e. it is (A.B)-invariant but has N
o
no (A.B)-controllable part, whereas '1a is a sliding subspace, [19]. fi.e. {t {s :‘

almost (A.B)-invariant but it has no (A.B)-invariant part.

R

..}}‘&"; "
[ Y
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Note that an eigenvalue of AF(e) = +® as e-0. On the other hand, consider

the (A.B)-invariant L(e)-subspace 7  generated by [1 -e]'. As e=0, 1, elso.

By going through the above procedure, we get F(e) = [-1/e¢ 0] and
-1/¢ O
1 0)°

Ao = |

Now the eigenvalue of AF.(e) that blows uyp approaches —® as e¢-0.

We proceed with proving some results related to the above observations:
Definition 4.2: A subspace 1e c Ln(e) is (A{e) B(e}))-invariant if 3 F(e): Ln(e)
- Lm(e) s.t. AF(e)'Ie C 16. where AF(e) = A(e) + B(e)F(e). We denote the family
of (A(e).B(e))-invariant L(e)-subspaces by !e' oo

A strajghtforward consequence of this definition is the following well
known result [24]:

Proposition 4.3: ¥ € V iff A(e)y C 7 + 3, where 3 = B(e)Lm(e).
e = 3 [

Let LA Ln(e) and V(e):[vl(e)l e Ivu(e)] be a matrix such that its
colums form a basis over L(e) for 1&' Let V(e):Pv(e)Dv(e)Qv(e) be a Smith
decomposition of V(e) such that Pv(e) is nxu, Dv(e) and Qv(e) are pxu. Then the
columns, pi(e). of Pv(e) form a basis over L(e) for 1e such that pi(e) € Tn(e)
and the columns of PV(O) is a basis over R. Ve use this for the existence of
the desired basis in the following defi;ition:

Definition 4.4: Let LS L"(e) and {vl(e). e vu(e)} be a basis over L(e) for

16 such that vi(e) € Tn(e) and the set of vectors (vl(O). cee vu(O)} forms a
basis over R for some 1‘ C R". Then we say that 1e converges asymptotically to

1a or 16——-'1a (this is convergence in the Grassmanian sense). e
e-0

One can always construct a matrix W(e) over T(e), such that W(0) = I and

vi(e) = W(e)vi(O). Thus an alternate representation of 1& would be W(e)1a. Ve
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use these notions to connect our results to their counterparts in [19] and [24].

The following result enables us to establish a connection between our
framework and the notion of almost (A.B)-invariance. It provides a method to
compute approximations for the distributional i{nputs required.to steer the
trajectories of an almost (A,B)-invariant subspace exactly through that
subspace. Using these high gain feedback approximations one can steer

trajectories arbitrarily close to an almost (A,B)-invariant subspace.

Denote the family of almost (A.B)~invariant subspaces by !a‘ We then have
the following result:

Proposition 4.5: For a pair (A.B). if 1a€!a then 3 1e€!e such that 16 ::g 1a. oo

The proof is very similar in principle to that of Willems [19] and it is
given in detail in [18]. However, note that the converse of the above
proposition does not hold, though [19] claims that it does. To illustrate this,

consider the following example:

Example 4.6: Let
0, 0 I
373 3
A= and B = . .
[‘3 °3] [°3]
Consider 7 = (vl(e).vz(e).vs(e)) where vl(e) =[(1000e 0],

vz(e) =[000100], vs(e) =[01000 1] and ()} denotes span over L(e).

7€V and 7 — ¢ where ¢ = (v _(0),v,(0).v,(0)) and {°} denotes span over R.
- &0 1 2 3

But £ is not an almost (A,B)-invariant subspace (this can easily be tested using

ISA and ACSA [19]). .

Willems [19] poses the problem of finding an input that steers the

trajectories of a system arbitrarily close to an almost (A.B)-invariant

21
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subspace. Our approach shows how this can be done. We show below how to
construct an (A.B)-invariant L(e)-subspace that converges asymptotically to the
almost (A.B)-invariant subspace. The desired input then follows on calculating
the feedback that makes the (A.B)-invariant L(e)-subspace AF(e)-invariant.

Recall from [19] that any almost (A.B)-invariant subspace 7  can be
represented as 1a=1+$‘ where 7 {s (A,B)~invariant and Qa is almost
(A.B)-controllable. Furthermore, any almost (A,B)-controllability subspace aa
can be represented as !a=a°033 where !o is the supremal (A.B)-controllability
subspace in ’a and ’s is a sliding subspace. By a construction in the proof of
Proposition 4.5 in [18], i{llustrated in the example below, we can find 1C € ze
where 1C=Q(e)!s. Q(e) over T(e) and Q(O0)=I, where 1c is a coasting L(e)-subspace
whose associated eigenvalues approach -» as e<0. The feedback F(e) that makes
1c an AF(e)-invariant L(e)-subspace can be calculated and provides the desired
input. Those eigenvalues of AF(e). that correspond to ﬂs approach -« as e-0.
This increases the magnitude of the feedback gains, and the generated inputs and
their derivatives approach impulses in the limit. The eigenvalues corresponding
to ﬂo can be assigned by the usual pole placement methods.

As an illustration of the procedure, consider the following example., which

contains the essential features of the general case:

Example 4.7: Let
000 1 _ _ 1 _ [o]
A=|100|,B= |0O|], 7 = {v,,v,}, where v, = |[O| and v, = |1
010 oj, & 12 1 o 2 o

1a is an almost (A.B)-invariant subspace, and in fact it is a sliding subspace.
Consider 7, = (vl(e).vz(e)). where vl(e) = (1 -e 52]‘ and v2(e) = [01 -2¢]".
Note that 1e is a coasting L(e)-subspace, {.e. {t is (A,B)-invariant but not

(A.B)-controllable. Furthermore, v,(0) = v,, v,(0) = v, and 7 —_. Also,
1 ) 2 €0 ?

vi(e):P(g)Vi, for i=1,2, where

[100]
P(e) = |- 1 O
2e -e2 |
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gets its lower triangular entries from a Pascal triangle construction with

alternating signs (see [18]). Solving the equations
Ale)[v,(e)]vy(e)] = [v,(e)lvy(e) g, (e)+Bg, (&)
g,(¢) = -F(e)[v,(e) |vy(e)]

yields -F(e)=[2/e 1/¢2 0" and
2

-2/e -1/ 0
AF(e) = A + BF(e) = [ 1 0 0}
0 1 O

with 1e being AF(e)-tnvaria.nt. Note that the desired input u(t) = F(e)x(t). On
the other hand, the eigenvalues of AF(e.) that correspond to ‘la are both at -1/e.

They are stable and approach —» as ¢-0. L)
IV.2 (A(e).B(e))-CONTROLLABILITY AND ALMOST (A.B)-INVARIANCE

We now proceed with the notion of (A(e).B(e))-controllability
L{e)-subspaces, adopting Wonham's definition [24] of (A.B)-controllability

subspaces. The notation <A(e)|%> will be used to denote % + A(e)3 + Az(e)s

Definition 4.8: ﬂﬁ Cc Ln(e) is an (A(e).B(e))-controllability subspece if there

exist maps F(e):l.n(e.) - Lm(e) and G(e):Lm(e) - Lm(e) such that
%, = <A(e)+B(e)F(e) |Im(B(e)G(e))>. Ve dénote the family of
(A(e).B(e))~controllability L(e)-subspaces by Be oo

;l'o put the above definition into a more usable form. consider the following
proposition, which simply restates results of Wonham [24] in the present
framework:
Proposition 4.9: (a) ,e € Be iff there exists a map F(e):l.n(e)-(.m(e) such that
’e = (A(e)+B(e)F(e) l“e> where 8 represents the range of B(e) over L(e).

(b) ﬂe = %(e)lﬂg for every map F(e) € F(ﬂe). where F(Qe) represents the
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K family of feedback matrices F{e) such that Qe is AF(e)-invarlant. .
¥
Llet # € R and 8 — % . Then, it turns out that & is almost
" e =€ e n n
Y =0

(A.B)-invariant. Finding inputs for steering trajectories arbitrarily close to

-

ﬂn is done by calculating an F(e) such that Qe is AF(e)-invariant and the
eigenvalues corresponding to Qe are continuous at e¢=0 and asymptotically stable.

The following lemma and proposition show this:

Lemma 4.10: Given a pair (A.B), let 24 € R and & —& , then V O(1) x, s.t.
_— e = €, P 0

d(xo.an)4 is O(e) and vr>0, 3 an tnput function u(t) s.t. d(x,(t.e).% ) is O(e)

e e

for 0<t{r, where xo(t.e) is the trajectory defined by u(t) and the initial

[ condition x..

g 0

) Proof: Here we first need to find a trajectory in ae which is O(1) for 0<t<r.

| Find F(e) s.t. ﬁe is Ap(e)-invariant and the eigenvalues of AF(e) corresponding
o to 36 are all continuous at e=0 and asymptotically stable. Then V¥ O(1) Xy € ﬁe.
o xl(t.e) € ’e Vt>0 where xl(t.e) is the trajectory defined by the initial

condition X and the input specified by F(e)x(t). Since the eigenvalues of

§F(e) corresponding to ’e are all continuous at e=0 and stable, xl(t.e) is 0(1).

& L

Therefore, d(xl(t.e).ﬂn) is O(e), since !ez:san. Consider x2(t.e). the

trajectory defined by the initial condition Xy =X5~X with x, € 36 chosen such

> 1 1

: that Xy is O(e). Since the eigenvalues of AF(e) are continuous at e=0, V¥r>0
N

e x2(t.e) is O(e) for 0<t¢r. Thus, d(xo(t.e).ﬁn) 1s O(e) for O<tgr. .o

Cal

o

. Proposition 4.11: Given a pair (A,B), let ,e € R, and Se-—dln. then & €V .
'’ e0

% Proof: Pick some 7>0 and apply Lemma 4.10. Thus, 3u(t) s.t. d(x(t.e).ﬂn) is
D)

Y 4

X d(x.L) = infx.eLux-x'“
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E: O(e) for O<Ct{r. Then 3 eo) 0 s.t. d(x(t.e).ﬂn) < 6 for 0<t${r and VeSeo. Use
:t x(7.¢) as the initial condition to reapply Lemma 4.10 for the interval
r <t §2r. Find el>0 s.t. e1$e° and d(x(t.el).an) {6 forr <t £ 27.
T Repeated use of Lemm 4.10 achieves the desired result. oo
~.
>
n
. To illustrate these, consider the following example:
o
:: Example 4.12: Let
% 000 10 1 0
3 A=1000|, B= Olandae=lme + Im{0
) 010 00 o 3
: Note that ’n = Im[1 0 0]'+Im[O O 1]* and it is an almost (A,B)-invariant
‘* subspace. Let F(e) = [-3 0 -2/¢], then Se is AF(e)-invariant and the
‘.\
> eigenvalues corresponding to Qe are at -2, -4, asymptotically stable and O(1).
W}
N Pick the initial state Xq of Lemma 4.10 as Xy = [1 00]". Let X, = [1e0] €
B "D
2 %, Then. x,(t.e) = [-e-t+2e.2t —ee Se2ee 72t -ee-t-ee-zt]' € ’e' and
‘.i
o d(xl(t.e).ﬁn) is clearly O(e) for any finite T. On the other hand, X, = [0 -e
N 0" and xy(t.e) = [2ee 2" 2e2e72% —e2e™2*]" . Thus, d(x(t).& ) is O(e). So. in
~
jﬁ the spirit of Proposition 4.11, this may be bounded by any 6 for any given 7T by
o,
picking an appropriate e=e . Then, using x(7.e) as the new initial state and
;;3 repeated use of this procedure achieves the desired result. .
o
\I' :
~
' In this section, we examined the notions of almost (A,B)-invariant and
< almost (A.B)-controllability subspaces in the framework that we have developed
S in this paper and [18]. We outlined & method for calculating inputs that steer
trajectories arbitrarily close to almost (A,B)-invariant subspaces or
~L
fﬁ equivalently force the eigenvalues corresponding to sliding parts of almost
L%
:3' (A.B)-controllability subspaces to approach -«. We also analyzed the properties
T
of limits of elements in V and R as e+ from a trajectory point of view.
A - -
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V. CONCLUSIONS

In this paper, we have developed an algebraic approach to high gain
controls for linear dynamic systems with varying orders of reachability. Based
on this approach, we addressed the issues of high gain inputs for reaching
target states, high gain feedback for pole placement and high gain inputs for
steering trajectories arbitrarily close to almost (A,B)-invariant subspaces and
almost (A,B)-controllability subspaces.

The results presented here suggest several directions for further research.
It ts of interest to analyze the orders of feedback gains for shifting the
limiting eigenvalues as e~0 in the more general case of proper systems, rather
than just systems over T(e). Intuitively, if a mode is e-reachable but
"1/e-observable”, in that it has a 1/e¢ coupling to other states, then it should
be possible to shift its eigenvalue by O(1) using O(1) feedback gain. A related
problem is that of changing the dynamics of a given continuous time system that
has multiple time scales [1,2] without changing its time scale structure. This
would involve shifting an eigenvalue A, where )\/c-.j is continuous at e¢=0. by some
aej. a>0.

A key problem that bears attention is that of parametrizing systems over R.
Two heuristic methods could be suggested for this. One is to recognize small
entries in the matrix, either isolated o; added to another entry, and replace
these with powers of ¢. Another method for parametrization could come from
numerical reachability tests [3], where for example small singular values at
different stages of a test may be replaced by (appropriate powers of) e.

It will be important to develop dual results for systems with observations
y[k] = C(e)x[k] or y(t) = C(e)x(t). This could then lead to research on
connections to optimal control [25,26], realization theory. balanced

realizations, [15]., and so on.

26

A S o n A L T e R AL T Y R P

(DAY

DR

VIR,



Very interesting and important generalizations may be expected from more
explici{t connection to and exploitation of the rather large literature on
systems over rings, as represented in [6-9] for example. In particular,

extensions to problems involving outputs will undoubtedly emerge from this.

Acknowledgements: The authors are very grateful to Professor Eduardo Sontag and
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We have tried to reflect their suggestions {n this revision.
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Here we develop an algorithm to recover a standard form without forming the

reachability matrix and computing {ts Smith decomposition. The proofs and

N

[}

ﬁ details on the algorithm are presented in [18]. Our algorithm can only deal

; with a pair (A(e).B(e)) over T(e). so this restriction is assumed here. The "
structure of a pair (A(e).B(e)) in standard form is then as follows: y

, A s \

t Ao.ole)  Agqle) - A (e )pg -
€A, o(e) Ay 4(e) . o A (e)])p 7

. Ale) = 1.0 1.1 1.k 1 (A.1a) :
. . . . :

A : . : : X

2 k . k-l - . . '

\ be Ak.O(e) [ Ak.l(e) . Ak.k(e).)pk x

: Bo(e) )po

: eB,(e)f}p,

: B(e) = (A.1b) A
¥ : .
! : ,

LekBk(e) By, .
Proposition A.1 : An ek-reachable pair (A(e).B(e)) over T(e) is in proper .
standard form with indices Pgr -+ « Py 1ff A(e) and B(e) satisfy the following
condition: Let F,(e) = D; (e)A(e)D,(e). G,(e) = D; (e)B(e) where D, () =
! 1
: diag(Ipo. Y Ip1+ . pk) then the reachable subspace of (Fi(O).Ci(O)) is
I
. 81 = Im[ ni]. for Vi € [0...k]. o N
R 0 \
; Definition A.2: Let
2 [ Ag.ole) Mg qle) - . Ag (e)]hmg
- €A, o(e) Ay () o oA L (e)])p .

efa, (e) i, (o) A ) |1p

€ 4.0 1.1 © oo g q\&TIPy
A
’
.
A

28
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[ By(e)]}p,
: - eB, (¢))p,
' B (e) = . (A.2b)
» '3 (e)|)p,

then (Zi(e).ﬁi(e)) is the g‘-reachable subsystem of (A(e).B(e)) with indices ny-

s [ .ni. bl

As with the submodule structure, the ei-reachable subsystem contains all

' eJ-reachable subsystems for j = O, ., {-1. The subsystems are layered with

weak couplings of different orders of ¢ between each component. Also,

'
&
b,
mn n-n
¢ ()T ()@ eltlT ey 3P (A.3)
A
7.
- ™y 1+1. "y 0
’ and the sequence (?i(e)T (e) e T (e)) converges to ¥ in k steps. In
other words, the eo-reachable submodules of the e‘-reachable subsystems
j approximate the eo-reachable submodule of the system in standard form upto ei*l
L3
v accuracy. We use this in Algorithm A.3 below.
X
)y Computation of the reachability matrix is very costly. One has to
v
i calculate Ai(e)B(e) for all the terms in the expansions of A(e) ard B(e). Thus.
3 it {s desirable to work directly with the pair (A(e).B(e)). The following
')
g algorithm takes advantage of Proposition A.l1 to recover the ej-reachability
; indices. At every step., the reachable subspace of a pair, evaluated at e=0, is
s computed. Then the pair is updated by an appropriate scaling of the unreachable

part by 1/7¢. The algorithm uses the higher order coefficients of the asymptotic

; expansions only when necessary. Also. it is possible to recover the acrtual
Smith decomposition of the reachability matrix from the algorithm, i{f the
transformations used in the algorithm are restricted to be permutation matrices

h and lower triangular matrices, though this restriction compromises numerical
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stability (see [18]).

o, ) Algorithm A.3:

Initialize: Ao(e) = Ae), Bo(e) = B(e), 1 =0
B> Step 1:

= 1. Find Ui such that

A }n
-1 1 A2y
Ui Ai(O)U1 = [

0 A

o with (Al.Bl) reachable. This determines n, .
"I

B.{)}n
-1 1 i
. U1 Bi(O) = [o ]

i
Q: 2. If n, = n then go to End, else continue.
Y
-1 -1 -1 -1
: 3. Lec A, (&) = D (e)U]'A(e)U,D, (e). B, = D] (e)U]'B, (e)

}.

. where Di(e) = diag(Int. eln_ni
. (It is not necessary to carry out the computation for all the
coefficients of Al(e) and Bi(e): see Note 1 in [18].)

4. Increment i, go to Step {.

] '7 /
whuN

Pl

End: k = 1, the system s ek—reachable with indices Ny «o- 0 Dy oe

vy
fan
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